Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713059

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment associated with the accumulation of beta-amyloid protein (Aß). Aß activates glial cells in the brain, increasing the secretion of proinflammatory cytokines, which leads to neuroinflammation and neuronal death. Currently, there are no effective treatments that cure or stop its progression; therefore, AD is considered a global health priority. The main limitations are the low drug bioavailability and impermeability of the blood-brain barrier (BBB). Fortunately, nanomedicine has emerged as a promising field for the development of new nanosystems for the controlled and targeted delivery of drugs to the brain. Therefore, in this work, lipid-polymer hybrid nanoparticles (LPHNPs) conjugated with transferrin (Tf) to facilitate crossing the BBB and loaded with N-acetylcysteine (NAC) for its anti-inflammatory effect were synthesized, and their physicochemical characterization was carried out. Subsequently, an in vitro model involving human astrocytes derived from induced pluripotent stem cells (iPSC) from an AD-diagnosed patient was developed, which was brought to a reactive state by stimulation with lipopolysaccharides (LPSs). The cell culture was treated with either Tf-conjugated LPHNPs loaded with NAC (NAC-Tf-LPHNPs) at 0.25 mg mL-1, or free NAC at 5 mM. The results showed that NAC-Tf-LPHNPs favorably modulated the expression of proinflammatory genes such as interleukin-1ß (IL-1ß), amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP). In addition, they reduced the secretion of the proinflammatory cytokines interleukin 6 (IL-6), IL-1ß and interferon-gamma (INF-γ). Results for both cases were compared to the group of cells that did not receive any treatment. In contrast, free NAC only had this effect on the expression of IL-1ß and the secretion of the cytokines IL-6 and INF-γ. These results indicate the potential of NAC-Tf-LPHNPs for AD treatment.

2.
Biomater Sci ; 12(5): 1307-1319, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38263852

RESUMO

Around 33% of the global population suffers from non-alcoholic fatty liver disease (NAFLD). From these patients, 30% of them progress into non-alcoholic steatohepatitis (NASH), the critical point where lack of treatment leads to cirrhosis and hepatic failure. Moreover, to date, there are no approved therapeutic options available for NASH. It is known that hepatic stellate cell (HSC) activation contributes the most to hepatic disfunction, leading to reactive oxygen species (ROS) accumulation and chronic inflammation, and that the use of nanomaterials to deliver antioxidants may have potential to reduce the activity of activated HSCs. Therefore, we implemented a human in vitro co-culture model in which we take into consideration two factors related to NASH and fibrosis: human hepatic stellate cells from a NASH diagnosed donor (HHSC-N) and peripheral blood mononuclear cells (PBMCs), particularly lymphocytes. The co-cultures were treated with: (1) carbon quantum dots (CD) or (2) lactoferrin conjugated CD (CD-LF) for 24 h or 72 h. CD and CD-LF treatments significantly downregulated profibrotic genes' expression levels of ACTA2, COL1A1, and TIMP1 in co-cultured HHSC-N at 72 h. Also, we assayed the inflammatory response by quantifying the concentrations of cytokines IL-22, IL-10, IFN-γ and IL-4 present in the co-culture's conditioned media whose concentrations may suggest a resolution-associated response in progress. Our findings may serve as a starting point for the development of a NASH treatment using bio-nanotechnology.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Pontos Quânticos , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Células Estreladas do Fígado/metabolismo , Leucócitos Mononucleares/metabolismo , Cirrose Hepática/patologia , Fibrose , Fígado/metabolismo
3.
ACS Omega ; 9(2): 2350-2361, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250422

RESUMO

Retaining the hemocompatibility, supporting cell growth, and exhibiting anti-inflammatory and antioxidant properties, while having antimicrobial activity, particularly against multidrug-resistant bacteria (MDR), remain a challenge when designing aerogels for biomedical applications. Here, we report that our synthesized alginate-based aerogels containing either 7.5 or 11.25 µg of lipoic acid-capped silver nanoparticles (AgNPs) showed improved hemocompatibility properties while retaining their antimicrobial effect against MDR Acinetobacter baumannii and the reference strain Escherichia coli, relative to a commercial dressing and polymyxin B, used as a reference. The differences in terms of the microstructure and nature of the silver, used as the bioactive agent, between our synthesized aerogels and the commercial dressing used as a reference allowed us to improve several biological properties in our aerogels with respect to the reference commercial material. Our aerogels showed significantly higher antioxidant capacity, in terms of nmol of Trolox equivalent antioxidant capacity per mg of aerogel, than the commercial dressing. All our synthesized aerogels showed anti-inflammatory activity, expressed as nmol of indomethacin equivalent anti-inflammatory activity per mg of aerogel, while this property was not found in the commercial dressing material. Finally, our aerogels were highly hemocompatible (less than 1% hemolysis ratio); however, the commercial material showed a 20% hemolysis rate. Therefore, our alginate-based aerogels with lipoic acid-capped AgNPs hold promise for biomedical applications.

4.
Nanoscale ; 13(3): 1738-1744, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428700

RESUMO

Plasmonic reversible gas sensors are of paramount importance for the monitoring of indoor environments. Herein, we design and engineer a plasmonic foam, with a high surface area, confined inside a capillary glass tube for the live monitoring of carbon monoxide (CO) in closed environments using surface-enhanced resonance Raman scattering. The illumination of the sensor with light during the flow of air allows the live monitoring of the concentration of atmospheric CO through surface-enhanced resonance Raman scattering. The sensor was prepared with a detection range from 10 to 40 ppm, due to health needs. The results show a sensitive, selective, reversible and robust sensor applicable to the monitoring of CO levels but also to other gas species upon appropriate functionalization.

5.
Biomater Sci ; 9(3): 726-744, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33179647

RESUMO

Hydrogels with antioxidant activity have shown to significantly improve the standard of care, because they promote efficient wound healing, i.e. regeneration. N-Acetylcysteine (NAC) is an antioxidant amino acid derivative that promotes complete tissue restoration. However, NAC has anticoagulant properties that may also hinder blood coagulation, which is crucial for hydrogels for wound healing applications. To take advantage of the regenerative activity of NAC while avoiding hampering the hemostasis stage during wound healing, we modified gelatin-NAC with the methacrylate-containing polymers 2-hydroxyethyl methacrylate (H) and poly(ethylene glycol) methyl ether methacrylate (P) to produce Gel-HP-NAC. These hydrogels clotted more blood and faster than Gel and Gel-NAC hydrogels, while maintaining fluid absorption properties adequate to promote wound healing. Similarly, there were more viable human skin fibroblasts after 10 days cultured in Gel-HP-NAC compared with Gel and Gel-NAC. A mouse full-thickness skin wound model demonstrated that Gel-HP-NAC hydrogels improved the wound healing process as compared to the untreated group as proved by the increased wound closure rates and re-epithelialization. Histology of the biopsied tissues indicated more organized collagen deposits on the wounds treated with either Gel-HP-NAC or Gel-NAC than untreated wounds. Our results show that modification of NAC-containing hydrogels through methacrylate-containing polymers improved their wound healing properties, including blood-clotting, and demonstrate the potential of Gel-HP-NAC hydrogels for wound treatment and tissue regeneration.


Assuntos
Acetilcisteína , Hidrogéis , Acetilcisteína/farmacologia , Metacrilatos , Polímeros , Cicatrização
6.
Carbohydr Polym ; 206: 455-467, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553345

RESUMO

This study sought to improve the handling, stability to aqueous medium and healing properties of alginate-based three-dimensional structures to be applied as wound scaffolds. Thus, Ca-alginate was plasticized with PEG-methyl ether methacrylate (PEGMA) and blended with the freeze-dried gel of A. vera and aqueous leaves extracts of M. oleifera. Ca-alginate-PEGMA scaffolds remained structurally stable almost four times longer than pure alginate materials, while a high porous architecture required for tissue scaffolding applications was maintained after alginate plasticization with PEGMA. A. vera increased the water uptake capability of the scaffolds and M. oleifera provided antioxidant capacity, anti-inflammatory properties and antimicrobial activity against S. aureus. Blending 1% (w/v) A. vera and 1% (w/v) M. oleifera with Ca-alginate-PEGMA, significantly increased the scaffolds cell proliferation (after 10 days of evaluation), compared with scaffolds without plant extracts. The experimental results showed that Ca-alginate-PEGMA/A. vera/M. oleifera biocomposites have great potential for wound healing applications.


Assuntos
Alginatos/farmacologia , Aloe/química , Metacrilatos/farmacologia , Moringa oleifera/química , Extratos Vegetais/farmacologia , Polietilenoglicóis/farmacologia , Cicatrização/efeitos dos fármacos , Alginatos/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Metacrilatos/química , Extratos Vegetais/química , Folhas de Planta/química , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Polietilenoglicóis/química , Porosidade , Staphylococcus aureus/efeitos dos fármacos
7.
Carbohydr Polym ; 148: 78-85, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27185118

RESUMO

This study sought to improve the mechanical and blood-absorbing properties of collagen sponges, while keeping them compressible, by incorporating blended hydroxyapatite (HA)-starch. Results were compared with CollaPlug(®) (pure collagen). The elastic modulus increased from 1.5±0.2kPa for CollaPlug(®) to 49±8kPa for sponges with composition 1:4:10 (collagen:HA:starch, by weight). The modified microstructure and surface area provided by the starch granules on the sponges improved cell viability. Sponges with composition 1:4:10 maintained their blood-clotting capability with almost no change from 5 to 15min after contact with blood, while CollaPlug(®) diminished to about half its capacity to absorb blood and form clots. Incorporation of HA-starch into the sponges with composition of 1:4:10, increased the elastic modulus of the collagen-HA sponges, making them more structurally robust. The viability of cells and the blood-clotting capability increased with starch incorporation.


Assuntos
Odontologia , Durapatita/química , Amido/química , Módulo de Elasticidade/efeitos dos fármacos , Humanos , Amido/farmacologia
8.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4958-64, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094210

RESUMO

The present study proposes an interpretation of the mechanism of bone deproteinization. Cortical and trabecular bovine femur bones were deproteinized using 6% NaOCl (37, 50, 60°C). The kinetic parameters (rate constant and activation energy) were calculated, and the surface area of each type of bone was considered. A statistical analysis of the rate constants shows that cortical bone deproteinizes at a lower rate than trabecular. The activation energy is higher for trabecular than cortical bone, and no significant differences are found in the protein concentration values for both bones. Therefore, although trabecular bone deproteinizes at a higher rate than cortical, trabecular bone requires more energy for the deproteinization reaction to take place. Considering that both types of bones are constituted by mineral, protein, and water; the present work shows that the individual inner matrix architecture of trabecular and cortical bones, along with characteristics such as the mineral concentration and its bonding with collagen fibers, may be the responsible factors that control protein depletion.


Assuntos
Fêmur/metabolismo , Proteínas/metabolismo , Hipoclorito de Sódio/química , Animais , Bovinos , Cinética , Proteínas/análise , Espectrofotometria Infravermelho , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...